

University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland

WHO Collaborating Centre Infection Prevention and Control and Antimicrobial Resistance

Les nouveautés concernant les recommandations internationales pour la prévention des infections FOCUS on CVC liées à un cathéter

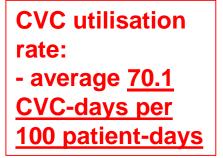
Dr. med. Niccolò BUETTI, MSc PhD

IPC & ID specialist

Service PCI, Hôpitaux Universitaires de Genève (HUG)

CONTENT

- Introduction
- SHEA/IDSA compendium 2022
- Selected recently published studies about the prevention of intravascular catheter infections
- Conclusions



Utilization of intravascular catheters (ICU & CVC):

Table 3. ICU-acquired central line-associated bloodstream infection (CLABSI) rates by country,

EU/EEA, 2017								
Country/Network	Number of ICUs	Number of patients	Average length of ICU stay (days)	CVC use (days per 100 patient days)		CLABS les per 1 00 25th percentile	00 cathe	75th
Belgium	3	614	8.6	71.2	2.7	1.9	3.2	3.8
Estonia	4	309	12.1	86.7	3.6	1.1	3.6	6.0
France	198	68 568	11.1	64.7	2.2	0.9	1.8	2.8
Hungary	8	797	9.6	21.7	4.3	0.0	0.0	7.9
Italy/GiViTI	63	13 950	9.8	82.8	3.0	1.3	2.3	4.1
Italy/SPIN-UTI	27	1 483	11.4	88.7	4.8	0.9	4.1	6.6
Lithuania	22	2 279	8.5	66.5	1.9	0.0	0.8	2.8
Luxembourg	8	2 843	9.8	66.4	1.7	0.0	1.7	2.8
Portugal	43	7 361	11.5	80.4	1.7	0.0	1.0	1.9
Slovakia	8	387	9.3	79.3	4.7	2.5	3.6	6.5
Spain	183	34 119	7.8	75.2	2.6	0.0	1.8	3.8
United Kingdom – Scotland	22	8 729	7.3	62.2	1.7	0.7	1.3	3.0
Source: ECDC, HAI-Net	patient-base	d data 2017						

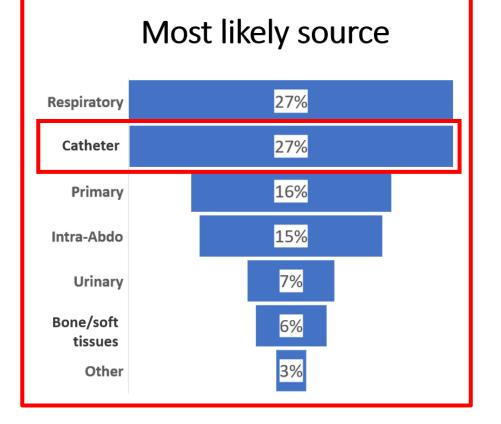
https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-HAI.pdf published 2019

Utilization of intravascular catheters (CVC):

Patient characteristics – national point prevalence survey on healthcare-associated infections in acute care hospitals, Switzerland, 2017 (n = 12,931)

							н	ospita	l size		-		
	A	ll hos	pitals		200 be	eds		0-650			650 be	ds	
		n=12,	931		n = 3,516		n=4,380		n = 5,035			p value	
		%	95% CI		%	95% CI		%	95% CI		%	95% CI	
Male sex	6,185	47.8	47.0-48.7	n=3,516	46.2	44.5-47.8	n=4,380	47.3	45.8-48.8	n=5,035	49.4	48.1-50.8	0.002
Age group													
o years	509	3.9	3.6-4.3	147	4.2	3.5-4.8	161	3.7	3.1-4.2	201	4.0	3.5-4.5	0.501
1-17 years	481	3.7	3.4-4.0	214	6.1	5.3-6.9	82	1.9	1.5-2.3	185	3.7	3.2-4.2	(0.001
18-40 years	1,647	12.7	12.2-13.3	475	13.5	12.4-14.6	512	11.7	10.7-12.6	660	13.1	12.2-14.0	0.033
41-60 years	2,284	17.7	17.0-18.3	568	16.2	14.9-17.4	737	16.8	15.7-17.9	979	19.4	18.4-20.5	(0.001
61-80 years	4,942	38.2	37.4-39.1	1,250	35.6	34.0-37.1	1,795	41.0	39.5-42.4	1,897	37.7	36.2-39.0	(0.001
>8o years	3,068	23.7	23.0-24.5	862	24.5	23.1-25.9	1,093	25.0	23.7-26.2	1,113	22.1	21.0-23.5	0.002
McCabe score													
Not fatal	10,119	78.3	77.5-79.0	2,892	82.3	81.0-83.5	3,306	75-5	74.2-76.8	3,921	77.9	76.7-79.0	(0.001
Ultimately fatal	1,730	13.4	12.8-14.0	456	13.0	11.9-14.1	611	13.9	12.9-15.0	663	13.2	12.2-14.1	0.903
Rapidly fatal	669	5.2	4.8-5.6	119	3.4	2.8-4.0	154	3.5	3.0-4.1	396	7.9	7.1-8.6	(0.001
Unknown	413	3.2	2.9-3.5	49	1.4	1.0-1.8	309	7.1	6.3-7.8	55	1.1	0.8-1.4	0.008
Surgery and mee	dical dev	ice us	e										
Surgery ^a	3,210	24.8	24.1-25.6	847	24.1	22.7-25.5	1,117	25.5	24.1-26.8	1,246	24.8	23.6-25.9	0.579
PVC	6.281	48.6	47.7-49.5	1.806	51.4	49.8-53.1	2,200	50.5	49.0-52.0	2,266	45.0	43.6-46.4	(0.001
CVC	1,355	10.5	10.0-11.0	231	6.6	5.6-7.4	397	9.1	8.2-9.9	727	14.4	13.5-15.4	<0.001
Urinary catheter	2,122	16.4	15.8-17.1	558	15.9	14.7-17.1	730	16.7	15.6-17.8	834	16.6	15.5–17.6	0.443

Point-prevalence study 2017, Switzerland



Zingg W et al. Euro Surveill. 2019 Aug;24(32):1800603

ICU-acquired bloodstream infections: the Eurobact2 study

A multicontinental study (2019 - 2021):

- 333 ICUs, 52 countries
- 2600 nosocomial ICU-treated BSIs
- 59% Gram-negative

CLABSI costs:

	Adjusted ^a to	tal costs (2010	USD)	Adjusted ^a variable costs (2010 USD)			
Characteristic	Coefficient	Excess cost	р	Coefficient	Excess cost	р	
CLABSI Other HAI Multiple catheters ICU stay, per day Step-down stay, per day	0.198 0.561 0.362 0.011 0.008	49 618 122 217 96 000 2921 2111	0.04 <0.0001 <0.01 <0.0001 <0.0001	0.211 0.595 0.386 0.011 0.008	32 412 78 832 63 096 1726 1280	0.03 <0.0001 <0.01 <0.0001 <0.0001	

CLABSI, central-line-associated bloodstream infection; HAI, healthcare-associated infection.

^aAll costs were modelled by generalized linear regression with log link and gamma distribution. In addition to the variables listed in the table, estimates were also adjusted for gender, age, race, major surgical procedure, Acute Physiologic and Chronic Health Evaluation (APACHE) II score, Charlson Comorbidity Index, diagnosis-related group (DRG) weight, and DRG system (AP-DRG, CMS-DRG, or APR-DRG).

TABLE 4. Estimatedadjustedexcess total and variable inpatienthospital costs (2010 US dollars(USD)) for patients with any intensive-care unit (ICU) stay (n = 150)

A bit old data BUT results: In both ICU and non-ICU patients → adjusted variable costs for patients with CLABSI were c. \$32 000 (2010 US dollars) higher on average than for patients without CLABSI.

CLABSI mortality:

	CLAB	351	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Blott 2005	49	176	82	315	8.1%	1.10 [0.72, 1.66]	
Cheewinmethasiri 2014	9	44	29	129	6.3%	0.89 [0.38, 2.06]	
Dimick 2001	5	9	53	251	4.3%	4.67 [1.21, 18.00]	· · · · · · · · · · · · · · · · · · ·
Hajjej 2014	7	32	10	120	5.4%	3.08 [1.07, 8.88]	
Higuera 2007	23	55	12	55	6.3%	2.58 [1.12, 5.93]	
Hsu 2013	7	16	12	64	4.9%	3.37 [1.05, 10.86]	
Kumar 2014	2	28	0	72	1.4%	13.68 [0.64, 294.32]	
Leistner 2013	7	40	3	40	4.1%	2.62 [0.63, 10.95]	
Olaechea 2013	262	1011	772	4044	8.7%	1.48 [1.26, 1.74]	-
Pawar 2004	8	35	3	1279	4.2%	126.02 [31.69, 501.22]	
Rello 2000	11	49	17	49	6.1%	0.54 [0.22, 1.33]	
Renaud 2001	10	26	7	26	4.9%	1.70 [0.53, 5.48]	
Rosenthal 2003	77	142	42	142	7.8%	2.82 [1.73, 4.60]	
Smith 2011	4	35	12	1050	4.9%	11.16 [3.41, 36.56]	
Soufir 1999	20	38	20	75	6.4%	3.06 [1.35, 6.92]	
Stevens 2013	56	197	18	201	7.4%	4.04 [2.27, 7.17]	
Warren 2006	21	41	301	1091	7.2%	2.76 [1.47, 5.16]	
Wittekamp 2013	1	2	59	219	1.6%	2.71 [0.17, 44.06]	
Total (95% CI)		1976		9222	100.0%	2.75 [1.86, 4.07]	•
Total events	579		1452				
Heterogeneity: Tau ² = 0.45	; Chi² = 87	.14, df =	= 17 (P < (0.00001); I² = 80%		
Test for overall effect: Z = 5	5.06 (P < 0	.00001)					0.01 0.1 1 10 10 Favours [experimental] Favours [control]

- Meta-analysis of case control and cohort studies (matched and unmatched)
- Mortality of patients with and without **CLABSI** was performed

CAVE: S aureus >> CoNS

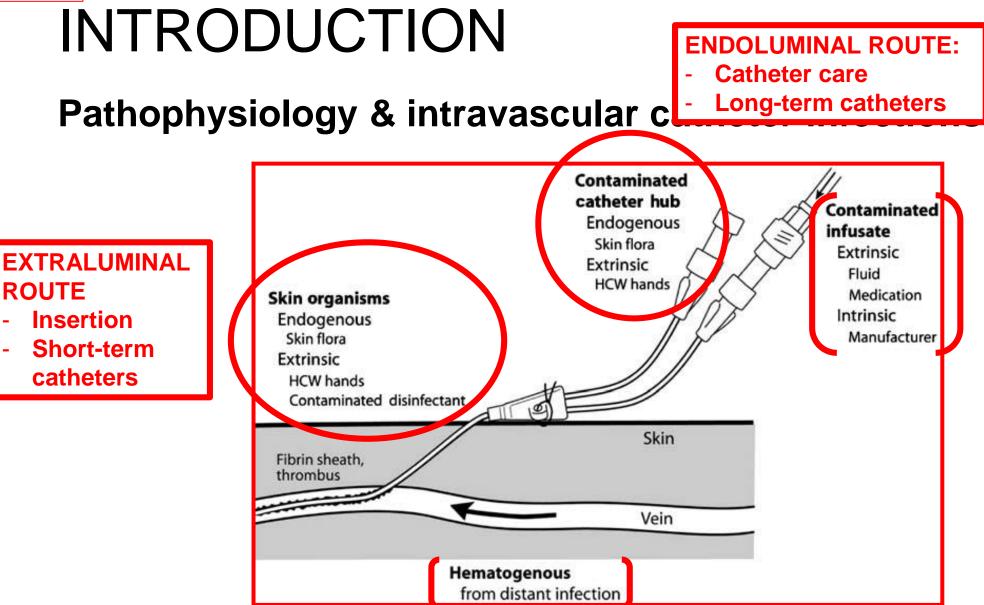
Ziegler M et al. Infection 2015. doi: 10.1007/s15010-014-0689-y

Preventable proportion of CLABSI:

Study	IV, R	andom, 95% Cl		IRR (95% CI)	Weight [%]
High income Allen (2014) Cherifi (2013) Dumyati (2014) Entesari-Tatafi (2015) Exline (2013) Freixas (2013) Guerin (2010) Hocking (2013) Hong (2013) Jeong (2013) Kellie (2014) Kim (2011) Longmate (2011) Matocha (2013) Miller (2016) O'Neil (2016) Palomar (2013) Render (2011) Salama (2016) Tang (2014) Subtotal (I-squared = 67.9%, P <0.001)		<u> </u>	-	$\begin{array}{c} 0.37 \ (0.19, \ 0.72) \\ 0.47 \ (0.24, \ 0.94) \\ 0.49 \ (0.40, \ 0.59) \\ 0.27 \ (0.12, \ 0.60) \\ 0.47 \ (0.25, \ 0.88) \\ 0.70 \ (0.55, \ 0.89) \\ 0.19 \ (0.06, \ 0.62) \\ 0.20 \ (0.06, \ 0.69) \\ 0.66 \ (0.31, \ 1.37) \\ 0.39 \ (0.13, \ 1.15) \\ 0.34 \ (0.07, \ 1.68) \\ 0.30 \ (0.23, \ 0.41) \\ 0.07 \ (0.00, \ 1.13) \\ 0.17 \ (0.01, \ 0.27) \\ 0.71 \ (0.34, \ 1.46) \\ 0.65 \ (0.58, \ 0.74) \\ 0.47 \ (0.41, \ 0.53) \\ 0.74 \ (0.53, \ 1.05) \\ 0.39 \ (0.15, \ 0.98) \\ 0.47 \ (0.40, \ 0.57) \end{array}$	$\begin{array}{c} 4.61\\ 4.30\\ 11.05\\ 3.46\\ 4.82\\ 10.41\\ 1.85\\ 1.76\\ 3.98\\ 2.17\\ 1.11\\ 9.33\\ 0.37\\ 0.34\\ 0.74\\ 4.04\\ 12.13\\ 12.08\\ 8.66\\ 2.80\\ 100.00\\ \end{array}$
Upper middle income Alp (2014) Apisarmthanarak (2010) Castagna (2016) Gao (2015) Higuera (2005) Leblebicioglu (2013) Marra (2010) Subtotal (I-squared = 94.7%, <i>P</i> <0.001) Lower middle income Jaggi (2013) Mathur (2015) Subtotal (I-squared = 95.8%, <i>P</i> <0.001)	++ + V	+ + + + + +		$\begin{array}{c} 1.53 \ (1.10, 2.14) \\ 0.10 \ (0.05, 0.22) \\ 0.15 \ (0.11, 0.22) \\ 1.35 \ (0.27, 6.68) \\ 0.42 \ (0.27, 0.66) \\ 0.70 \ (0.54, 0.90) \\ 0.47 \ (0.35, 0.63) \\ 0.44 \ (0.23, 0.85) \\ \end{array}$	15.69 13.37 15.66 8.33 15.17 15.96 15.82 100.00 50.53 49.47 100.00
0.001 0.01	0.05 0.1	0.5 1	5	10	
Favours	intervention	Favou	rs sta	indard of care	

Significant reduction of HAI rates in the range of 35%–**55**% associated with multifaceted interventions irrespective of a country's income level

CLABSI: 0.459 (95% CI, 0.381-0.554)


COVID-19 & intravascular catheter infections:

	2020 Q1	2020 Q2	2020 Q3	2020 Q4
CLABSI	-11.8%	27.9%	46.4%	47.0%
CAUTI	-21.3%	No Change ¹	12.7%	18.8%
VAE	11.3%	1 33.7%	1 29.0%	44.8%
SSI: Colon surgery	-9.1%	No Change ¹	-6.9%	-8.3%
SSI: Abdominal hysterectomy	-16.0%	No Change ¹	No Change ¹	-13.1%
Laboratory-identified MRSA bacteremia	-7.2%	12.2%	22.5%	133.8%
Laboratory-identified CDI	-17.5%	-10.3%	-8.8%	-5.5%

Weiner-Lastinger LM et al., ICHE 2021, doi:10.1017/ice.2021.362

Safdar N & Maki D; 2002, Intensive Care Med, 2004 Jan; 30(1):62-7

SHEA

CONTENT

- Introduction
- With a lot of self-criticism 🕑 • SHEA/IDSA compendium 2022
 - Infection Control & Hospital Epidemiology (2022), 43, 553–569 doi:10.1017/ice.2022.87
- Selected red intravascula

SHEA/IDSA/APIC Practice Recommendation

- Strategies to prevent central line-associated bloodstream infections in acute-care hospitals: 2022 Update
- Conclusions

Niccolò Buetti MD, MSc, PhD^{1,2,a} (a), Jonas Marschall MD, MSc^{3,4,a} (a), Marci Drees MD, MS^{5,6} (b), Mohamad G. Fakih MD, MPH⁷ (0), Lynn Hadaway MEd, RN, NPD-BC, CRNI⁸, Lisa L. Maragakis MD, MPH⁹, Elizabeth Monsees PhD, MBA, RN, CIC^{10,11} (), Shannon Novosad MD MPH¹², Naomi P. O'Grady MD¹³, Mark E. Rupp MD¹⁴ , Joshua Wolf MBBS, PhD, FRACP^{15,16} , Deborah Yokoe MD, MPH¹⁷ and Leonard A. Mermel DO, ScM^{18,19}

Essential Practices

Before insertion

- 1. Provide easy access to an evidence-based list of indications for CVC use to minimize unnecessary CVC placement (Quality of Evidence: LOW)
- Require education and competency assessment of HCP involved in insertion, care, and maintenance of CVCs about CLABSI prevention (Quality of Evidence: MODERATE)^{74–78}
- 3. Bathe ICU patients aged >2 months with a chlorhexidine preparation on a daily basis (Quality of Evidence: HIGH)⁸⁶⁻⁹⁰

At insertion

- 1. In ICU and non-ICU settings, a facility should have a process in place, such as a checklist, to ensure adherence to infection prevention practices at the time of CVC insertion (Quality of Evidence: MODERATE)¹⁰¹
- 2. Perform hand hygiene prior to catheter insertion or manipulation (Quality of Evidence: MODERATE)¹⁰²⁻¹⁰⁷
- 3. The subclavian site is preferred to reduce infectious complications when the catheter is placed in the ICU setting (Quality of Evidence: HIGH)^{33,37,108–110}
- 4. Use an all-inclusive catheter cart or kit (Quality of Evidence: MODERATE)¹¹⁸
- 5. Use ultrasound guidance for catheter insertion (Quality of Evidence: HIGH)^{119,120}
- 6. Use maximum sterile barrier precautions during CVC insertion (Quality of Evidence: MODERATE)¹²³⁻¹²⁸
- 7. Use an alcoholic chlorhexidine antiseptic for skin preparation (Quality of Evidence: HIGH)^{42,129-134}

After insertion

- 1. Ensure appropriate nurse-to-patient ratio and limit use of float nurses in ICUs (Quality of Evidence: HIGH)^{34,35}
- 2. Use chlorhexidine-containing dressings for CVCs in patients over 2 months of age (Quality of Evidence: HIGH)^{45,135-142}
- For non-tunneled CVCs in adults and children, change transparent dressings and perform site care with a chlorhexidine-based antiseptic at least every 7 days or immediately if the dressing is soiled, loose, or damp. Change gauze dressings every 2 days or earlier if the dressing is soiled, loose, or damp (Quality of Evidence: MODERATE)¹⁴⁵⁻¹⁴⁸
- 4. Disinfect catheter hubs, needleless connectors, and injection ports before accessing the catheter (Quality of Evidence: MODERATE)¹⁵⁰⁻¹⁵⁴
- 5. Remove nonessential catheters (Quality of Evidence: MODERATE)
- Routine replacement of administration sets not used for blood, blood products, or lipid formulations can be performed at intervals up to 7 days (Quality of Evidence: HIGH)¹⁶⁴
- 7. Perform surveillance for CLABSI in ICU and non-ICU settings (Quality of Evidence: HIGH)^{13,165,166}

Before insertion:

Before insertion

- 1. Provide easy access to an evidence-based list of indications for CVC use to minimize unnecessary CVC placement (Quality of Evidence: LOW)
- Require education and competency assessment of HCP involved in insertion, care, and maintenance of CVCs about CLABSI prevention (Quality of Evidence: MODERATE)^{74–78}

3. Bathe ICU patients aged >2 months with a chlorhexidine preparation on a daily basis (Quality of Evidence: HIGH)^{86–90}

• Several RCTs showed a reduction of CLABSI...

Before insertion:

Chlorhexidine bathing:

Reduction -> possibly due to the reduction of commensal Gram-positive skin microorganisms?

(intervention effect → partially explained by a reduction in blood culture contamination?).

	CHG ba	thing	Cont	rol		Odds ratio	Odds ratio
Study or subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% C
1.5.1 Gram-positive	BSI						
Bleasdale 2007	7	2,195	24	2,115	18.8%	0.28(0.12-0.65) -	/
Climo 2013	43	24,931	68	25,000	27.2%	0.63 (0.43-0.93)	
Milstone 2013	25	15,057	72	16,024	25.9%	0.37 (0.23-0.58)	
Noto 2015	74	19,202	72	20,721	28.1%	1.11(0.80 - 1.54)	
Subtotal		61,385		63,860	100.0%	0.55 (0.31-0.99)	
Total events	149		236				
Heterogeneity: Tau ² = Test for overall effect				3 (p = 0	.0002); I ²	= 85%	
Test for overall effect 1.5.2 Gram-negative	: Z = 1.99	9 (p= 0.0	05)				
Test for overall effect 1.5.2 Gram-negative Bleasdale 2007	:: Z = 1.99 a BSI 2	9 (p= 0.0 2,195	1	2,115	2.1%	1.93 (0.17-21.28)	
Test for overall effect 1.5.2 Gram-negative Bleasdale 2007 Climo 2013	: Z = 1.99 BSI 2 23	2,195 24,931	05) 1 27	2,115 25,000	2.1% 38.3%	1.93 (0.17-21.28) 0.85 (0.49-1.49)	
Test for overall effect 1.5.2 Gram-negative Bleasdale 2007 Climo 2013 Milstone 2013	: Z = 1.99 BSI 2 23 14	2,195 24,931 15,057	05) 1 27 24	2,115 25,000 16,024	2.1% 38.3% 27.3%	1.93 (0.17-21.28) 0.85 (0.49-1.49) 0.62 (0.32-1.20)	
Test for overall effect 1.5.2 Gram-negative Bleasdale 2007 Climo 2013 Milstone 2013 Noto 2015	: Z = 1.99 BSI 2 23 14	2,195 24,931 15,057 19,202	1 27 24 22	2,115 25,000 16,024 20,721	2.1% 38.3% 27.3% 32.3%	1.93 (0.17-21.28) 0.85 (0.49-1.49) 0.62 (0.32-1.20) 0.98 (0.54-1.80)	
Test for overall effect 1.5.2 Gram-negative Bleasdale 2007 Climo 2013 Milstone 2013 Noto 2015 Subtotal	2 Z = 1.99 BSI 2 23 14 20	2,195 24,931 15,057	1 27 24 22	2,115 25,000 16,024 20,721	2.1% 38.3% 27.3%	1.93 (0.17-21.28) 0.85 (0.49-1.49) 0.62 (0.32-1.20)	
Test for overall effect 1.5.2 Gram-negative Bleasdale 2007 Climo 2013 Milstone 2013 Noto 2015 Subtotal Total events	:: Z = 1.99 BSI 2 23 14 20 59	2,195 24,931 15,057 19,202 61,385	1 27 24 22 74	2,115 25,000 16,024 20,721 63,860	2.1% 38.3% 27.3% 32.3% 100.0%	1.93 (0.17-21.28) 0.85 (0.49-1.49) 0.62 (0.32-1.20) 0.98 (0.54-1.80) 0.83 (0.59-1.17)	
Test for overall effect 1.5.2 Gram-negative Bleasdale 2007 Climo 2013 Milstone 2013 Noto 2015 Subtotal Total events Heterogeneity: Tau ² =	:: Z = 1.99 a BSI 2 23 14 20 59 = 0.00; Ch	2,195 24,931 15,057 19,202 61,385 $ni^2 = 1.5$	1 27 24 22 74 2, df = 3	2,115 25,000 16,024 20,721 63,860	2.1% 38.3% 27.3% 32.3% 100.0%	1.93 (0.17-21.28) 0.85 (0.49-1.49) 0.62 (0.32-1.20) 0.98 (0.54-1.80) 0.83 (0.59-1.17)	
Test for overall effect 1.5.2 Gram-negative Bleasdale 2007 Climo 2013 Milstone 2013 Noto 2015 Subtotal Total events	:: Z = 1.99 a BSI 2 23 14 20 59 = 0.00; Ch	2,195 24,931 15,057 19,202 61,385 $ni^2 = 1.5$	1 27 24 22 74 2, df = 3	2,115 25,000 16,024 20,721 63,860	2.1% 38.3% 27.3% 32.3% 100.0%	1.93 (0.17-21.28) 0.85 (0.49-1.49) 0.62 (0.32-1.20) 0.98 (0.54-1.80) 0.83 (0.59-1.17)	

Figure 5. Subgroup analysis of rates of hospital-acquired Gram-positive and Gram-negative bloodstream

Last RCT (2012-2013): negative

results

Before insertion:

Chlorhexidine bathing:

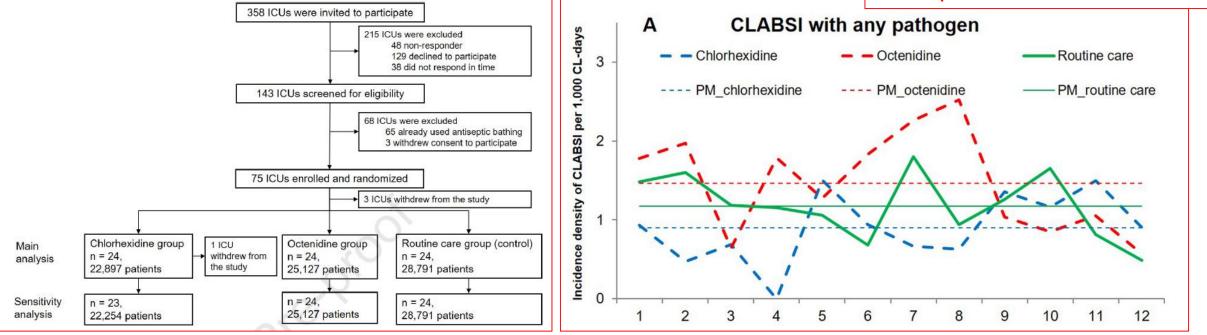
• Large meta-analysis with other outcomes...

• "it is not clear whether bathing with chlorhexidine reduces hospital-acquired infections, mortality, or length of stay in the ICU"

Study or subgroup	Chlorhexidine N	Soap and water Rai	e Difference (SE)	Rate Difference IV,Random,95% CI	Weight	Rate Difference IV,Random,95% Cl
1 Parallel studies Boonyasiri 2016	199	189	-1.98 (2.531)		7.6 %	-1.98 [-6.94, 2.98
Camus 2005	130	126	0.668 (6.67) +	•	1.4 %	0.67 [-12.40, 13.74
Pallotto 2018	226	223	17.7 (8.349)		• 0.9 %	17.70 [1.34, 34.00
Swan 2016	161	164	6.768 (3.05)		■ 5.7 %	6.77 [0.79, 12.75
Subtotal (95% CI) Heterogeneity: Tau ² = 30 Test for overall effect: Z :	716 0.63; Chi ² = 8.47, df = 1.10 (P = 0.27)	702 = 3 (P = 0.04); I ² = 6	5%		15.7 %	4.00 [-3.14, 11.14
2 Cluster randomised cro Bleasdale 2007	ssover trials 445	391	6.3 (2.5)		7.8 %	6.30 [1.40, 11.20
Climo 2013	3970	3842	1.82 (0.675)		25.4 %	1.82 [0.50, 3.14
Milstone 2013	1319	1199	1.37 (0.745)		24.5 %	1.37 [-0.09, 2.8
Noto 2015	4488	4852	0.04 (0.586)		26.6 %	0.04 [-1.11, 1.1
Subtotal (95% CI) Heterogeneity: Tau ² = 1. Test for overall effect: Z :	10222 24; Chi ² = 8.86, df = 1.95 (P = 0.051)	10284 = 3 (P = 0.03); I ² =66	96	•	84.3 %	1.41 [0.00, 2.83
Total (95% CI) Heterogeneity: Tau ² = 2. Test for overall effect: Z = Test for subgroup differe	= 2.11 (P = 0.035)			-	100.0 %	1.70 [0.12, 3.29

Lewis SR et al. Cochrane Database Syst Rev. 2019. doi: 10.1002/14651858.CD012248.pub2.

Before insertion:


- Chlorhexidine bathing:
 - New large c-RCT from Germany:

Adjusted IRR of CLABSI:

- 0.69 (0.37-1.22), **p=0.28** for CHX
- 1.22 (0.54-2.75), p=0.65 octenidine

Underpowered?

Denkel LA et al. Clinical Microbiology and Infection, 2022, https://doi.org/10.1016/j.cmi.2021.12.023..

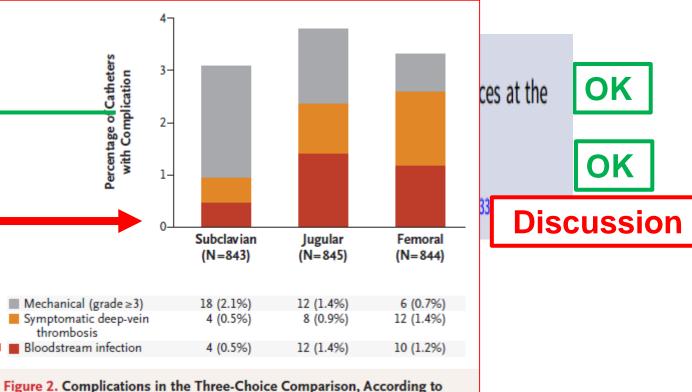
Before insertion:

Before insertion

- 1. Provide easy access to an evidence-based list of indications for CVC use to minimize unnecessary CVC placement (Quality of Evidence: LOW)
- Require education and competency assessment of HCP involved in insertion, care, and maintenance of CVCs about CLABSI prevention (Quality of Evidence: MODERATE)^{74–78}

3. Bathe ICU patients aged >2 months with a chlorhexidine preparation on a daily basis (Quality of Evidence: HIGH)⁸⁶⁻⁹⁰

- Not sure:
 - RCT (2015) negative, large c-RCT (2022) negative
 - Effect more on Gram-positive (effect on Gram-negative unclear, probably more CoNS & BC contaminantions...)
 - CHX everywhere?
 - Conclusions?



At insertion:

At insertion

- In ICU and non-ICU settings, a facility should have a process in place, su time of CVC insertion (Quality of Evidence: MODERATE)¹⁰¹
- 2. Perform hand hygiene prior to catheter insertion or manipulation (Quali
- 3. The subclavian site is preferred to reduce infectious complications when
 - 3SITES trial:
 - Large RCT FEM vs JUG vs SUBCL:

Figure 2. Complications in the Three-Choice Comparison, According to Insertion-Site Group.

The primary end point (the composite of symptomatic deep-vein thrombosis and bloodstream infection) differed significantly among the insertion-site groups (P=0.02 by the log-rank test), as did the principal safety secondary end point (mechanical complications) (P=0.047 by the chi-square test).

At insertion:

Subclavian insertions?

- Summary:
 - Subclavian for long catheter maintenance
 - For (predictable?) short catheter maintenance: Jugular and femoral insertions OK
 - Risk difference between FEM and JUG:

• 3SITES:

P=0.04), whereas the risk in the femoral group was similar to that in the jugular group (hazard ratio, 1.3; 95% CI, 0.8 to 2.1; P=0.30).

- Suggestions:
 - internal jugular insertion better with BMI>28.4 kg/m2, OR
 - internal jugular site when the catheter was left in place for more than 5 days

Timsit JF et al. AOIC. 2020. doi: 10.1186/s13613-020-00713-4. // Parienti JJ et al. 3SITES study NEJM 2015. DOI: 10.1056/NEJMoa1500964

At insertion:

4. Use an all-inclusive catheter cart or kit (Quality of Evidence: MODERATE)¹¹⁸
5. Use <u>ultrasound guidance</u> for catheter insertion (Quality of Evidence: HIGH)^{119,120}
6. Use <u>maximum sterile barrier precautions</u> during CVC insertion (Quality of Evidence: MODERATE)¹²³⁻¹²⁸
7. Use an also halis chloriboridine anticantic for align preparation (Quality of Evidence: MODERATE)¹²³⁻¹²⁸

7. Use an alcoholic chlorhexidine antiseptic for skin preparation (Quality of Evidence: HIGH)^{42,129-134}

OK To be discussed... OK

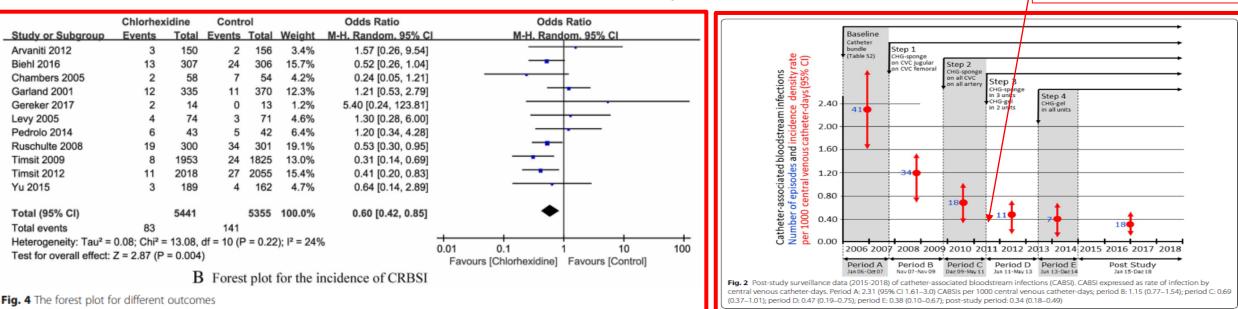
Small discussion

CLEAN study: superiority of alcoholic 2% CHG versus PVI. What about percentage?

Table 1 Multivariate Cox analysis of catheter-related infection (CRI) and catheter-related bloodstream infection (CRBSI) in the 3SITES cohort study (n = 3471)

	CRI		CRBSI	
	aHR (95 % CI)	<i>p</i> value	aHR (95 % CI)	<i>p</i> value
Antiseptic ^a				
5 % PVI-a (4-step)	1 [reference]		1 [reference]	
2 % CHX-a (1-step)	0.51 (0.28–0.96)	0.037	0.83 (0.38–1.79)	0.63
<1 % CHX-a (4-step)	0.73 (0.36–1.48)	0.37	0.93 (0.37–2.37)	0.94
10 % PVI (4-step)	1.50 (0.85–2.64)	0.16	1.17 (0.49–2.81)	0.73
Other or unknown	0.82 (0.21–3.18)	0.82	0.87 (0.12–6.31)	0.89

In comparison with PVI-a, the <u>use of 2 % CHX-a</u> <u>for cutaneous disinfection</u> of the CVC insertion site and maintenance catheter care was associated with a reduced risk of catheter infection, <u>while the</u> <u>benefit of <1 % CHX-a was uncertain</u>.


2% CHG

SHEA/IDSA

After insertion:

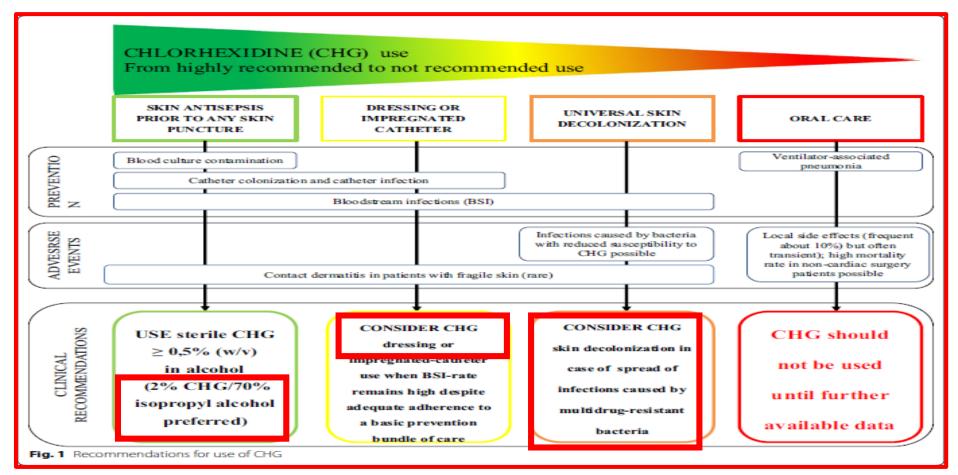
Ensure appropriate nurse-to-patient ratio and limit use of float nurses in ICUs (Quality of Evidence: HIGH)^{34,35}
 Use chlorhexidine-containing dressings for CVCs in patients over 2 months of age (Quality of Evidence: HIGH)^{45,}
 Small discussion

Recent SR & MA & «real-life» study:

Wei L et al. BMC Infect Dis 2019. 19:429. Eggimann P et al. Intensive Care Medicine 2019. https://doi.org/10.1007/s00134-019-05617-x

After insertion:

CHG-impregated dressings: Reduction of intravascular catheter infections BUT


- CHG may trigger contact dermatitis
- What about their impact while applying alcoholic 2% CHG skin antisepsis? Or CHG bathing?
- Ecological impact of broadly use of CHG unknown..
- If yes: probably better CHG-gel (*versus* sponge):
 - Similar infection rates but less disruptions
 - Concomitant use with CHG skin antisepsis
 - ↑ dermatitis

		Odds ratio (95% CI), p-value
Dressing disruption risk		
All Gel-dress (versus Sponge-dress)	•	0.72 (0.60-0.86), p<0.01
Gel-dress (versus Sponge-dress) in ICUs participating in both studies	•	0.71 (0.59-0.85), p<0.01
Gel-dress (versus Sponge-dress) after adjustment for disruption risk factors*	•	0.70 (0.58-0.85), p<0.01
Contact dermatitis risk		
All Gel-dress (versus Sponge-dress)	-	■ 3.60 (2.51-5.15), p<0.01
Gel-dress (versus Sponge-dress) in ICUs participating in both studies	-	4.70 (2.57-8.61), p<0.01
Gel-dress (versus Sponge-dress) with ICDRC >=2		2.61 (1.42-4.82), p<0.01
Favors Gel-dress	1	5 10 Favors Sponge-dress

Small note on CHG:

Bouadma L et al. Intensive Care Medicine. 2018. https://doi.org/10.1007/s00134-018-5137-5.

OK

Patients with BMI \geq 40: \uparrow risk for

SHEA/IDSA

After insertion:

 For non-tunneled CVCs in adults and children, change transparent dressings and perform site care with a chlorhexidine-based antiseptic at least every 7 days or immediately if the dressing is soiled, loose, or damp. Change gauze dressings every 2 days or earlier if the dressing is soiled, loose, or damp (Quality of Evidence: MODERATE)¹⁴⁵⁻¹⁴⁸

• Pay attention to dressing disruptions:

MCRI	Risk for patients	with BMI >=40	intravascular infect (more dressing dis	
15- で 第8年4 数 10-			Hazard Ratios (95% CI)	
Haowen and the A	Risk for MCRI :			
5-	Unadjusted MCRI		2.174 (1.195-3.955), p=0.0110	
0	Adjusted MCRI		2.192 (1.189-4.041), p=0.0119	
CRBSI				
30 - T	Risk for CRBSI :			
5 - 55 - 56 - 56 - 56 - 56 - 56 - 56 - 5	Unadjusted CRBSI		- 1.857 (1.109-3.110), p=0.0188	
ра ороди различни так на селото на Селото на селото на с	Adjusted CRBSI		- 1.880 (1.131-3.123), p=0.0148	
·				

Buetti N et al. Intensive Care Medicine. 2021. doi: 10.1007/s00134-020-06336-4.

OK

OK

OK

Recent study

SHEA/IDSA

After insertion:

4. Disinfect catheter hubs, needleless connectors, and injection ports before accessing the catheter (Quality of Evidence: MODERATE)¹⁵⁰⁻¹⁵⁴

5. Remove nonessential catheters (Quality of Evidence: MODERATE)

 Routine replacement of administration sets not used for blood, blood products, or lipid formulations can be performed at intervals up to 7 days (Quality of Evidence: HIGH)¹⁶⁴

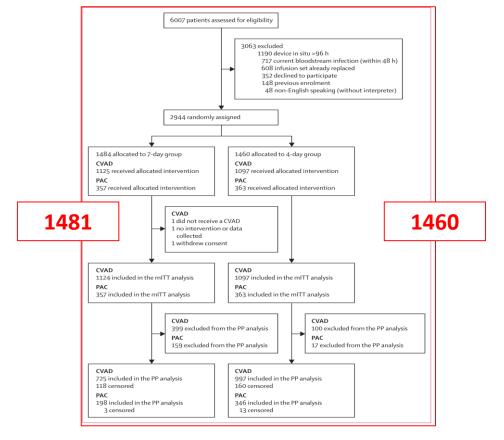
7. Perform surveillance for CLABSI in ICU and non-ICU settings (Quality of Evidence: HIGH)^{13,165,166}

RSVP trial

- Multicenter RCT conducted in Australia
- CVCs and ACs included
- Adults and children

Effect of infusion set replacement intervals on catheterrelated bloodstream infections (RSVP): a randomised, controlled, equivalence (central venous access device)– non-inferiority (peripheral arterial catheter) trial

Claire M Rickard, Nicole M Marsh, Emily N Larsen, Matthew R McGrail, Nicholas Graves, Naomi Runnegar, Joan Webster, Amanda Corley, David McMillan, John R Gowardman, Debbie A Long, John F Fraser, Fenella J Gill, Jeanine Young, Marghie Murgo, Evan Alexandrou, Md Abu Choudhury, Raymond J Chan, Nicole C Gavin, Azlina Daud, Annamaria Palermo, Adrian Regli, E Geoffrey Playford



After insertion:

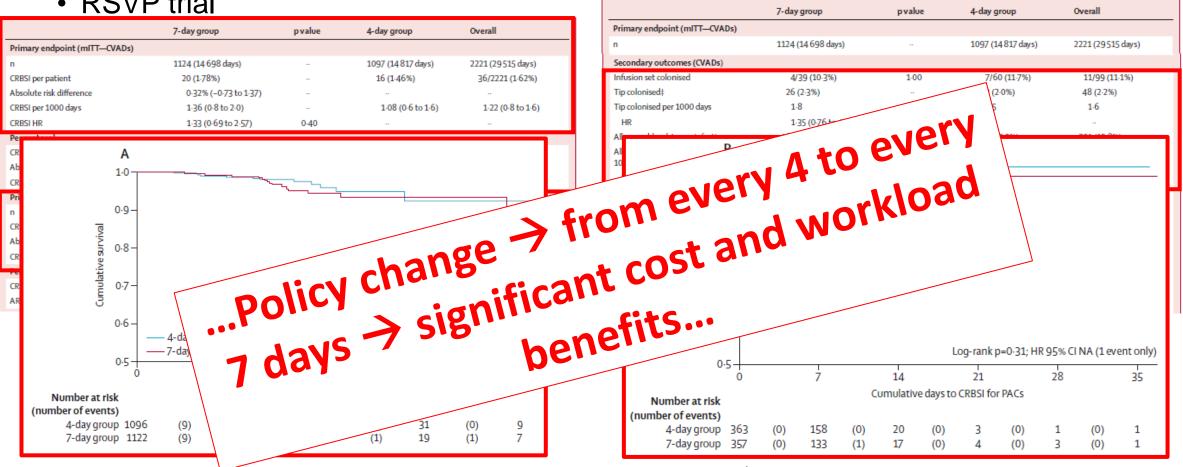
• RSVP trial

Effect of infusion set replacement intervals on catheterrelated bloodstream infections (RSVP): a randomised, controlled, equivalence (central venous access device)– non-inferiority (peripheral arterial catheter) trial

Claire M Rickard, Nicole M Marsh, Emily N Larsen, Matthew R McGrail, Nicholas Graves, Naomi Runnegar, Joan Webster, Amanda Corley, David McMillan, John R Gowardman, Debbie A Long, John F Fraser, Fenella J Gill, Jeanine Young, Marghie Murgo, Evan Alexandrou, Md Abu Choudhury, Raymond J Chan, Nicole C Gavin, Azlina Daud, Annamaria Palermo, Adrian Regli, E Geoffrey Playford

	7-day group (n=1481)	4-day group (n=1460)
Total days studied	17196	17 438
Adults	1293 (87.3%)	1259 (86.2%)
Age, years	59.0 (47–68)	57.0 (45–67)
Paediatrics	188 (12.7%)	201 (13.8%)
Age, years	3.2 (0.9–10.0)	2.3 (0.8–8.0)
Male	935 (63.1%)	915 (62.7%)
Female	546 (36.9%)	545 (37·3%)
Hospital day at entry	5 (3–9·5)	4 (3-8)
Diagnosis		
Medical—general	452 (30·5%)	483 (33·1%)
Medical—haematology	322 (21·8%)	318 (21.8%)
Emergency surgical	236 (16.0%)	225 (15.4%)
Catheter type		
CVAD	1124 (75.9%)	1097 (75.1%)
Tunnelled cuffed or implanted port	203 (13.7%)	197 (13.5%)
Non-tunnelled	486 (32.8%)	489 (33·5%)
PICC	435 (29.4%)	411 (28·2%)
PAC	357 (24.1%)	363 (24·9%)

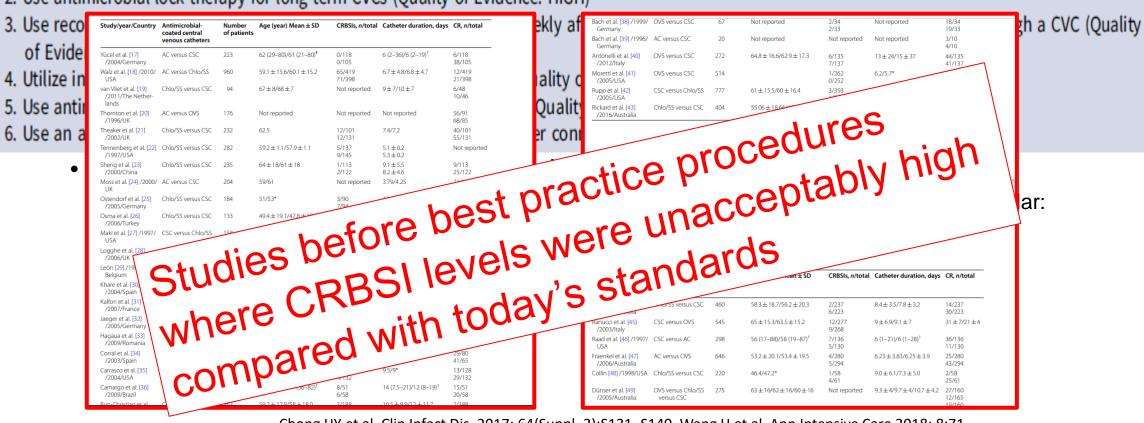
Rickard C et al., Lancet. 2021 Apr 17;397(10283):1447-1458. doi: 10.1016/S0140-6736(21)00351-2.


After insertion:

RSVP trial

Effect of infusion set replacement intervals on catheterrelated bloodstream infections (RSVP): a randomised, controlled, equivalence (central venous access device)non-inferiority (peripheral arterial catheter) trial

Claire M Rickard, Nicole M Marsh, Emily N Larsen, Matthew R McGrail, Nicholas Graves, Naomi Runnegar, Joan Webster, Amanda Corley, David McMillan, John R Gowardman, Debbie A Lonq, John F Fraser, Fenella J Gill, Jeanine Younq, Marghie Murgo, Evan Alexandrou, Md Abu Choudhury, Raymond J Chan, Nicole C Gavin, Azlina Daud, Annamaria Palermo, Adrian Reali, E Geoffrey Playford


Rickard C et al., Lancet. 2021 Apr 17;397(10283):1447-1458. doi: 10.1016/S0140-6736(21)00351-2.

Additional Approaches

- Use antiseptic- or antimicrobial-impregnated CVCs (Quality of Evidence: HIGH in adult patients^{38,39,169–171} and Quality of Evidence: MODERATE in pediatric patients)^{172,173}
- 2. Use antimicrobial lock therapy for long-term CVCs (Quality of Evidence: HIGH)¹⁷⁷⁻¹⁸⁴

Chong HY et al. Clin Infect Dis. 2017; 64(Suppl_2):S131–S140. Wang H et al. Ann Intensive Care 2018; 8:71.

Approaches that Should Not Be Considered a Routine Part of CLABSI Prevention

- 1. Do not use antimicrobial prophylaxis for short-term or tunneled catheter insertion or while catheters are in situ (Quality of Evidence: HIGH)²⁰⁹⁻²¹³
- 2. Do not routinely replace CVCs or arterial catheters (Quality of Evidence: HIGH)²¹⁴

Unresolved Issues

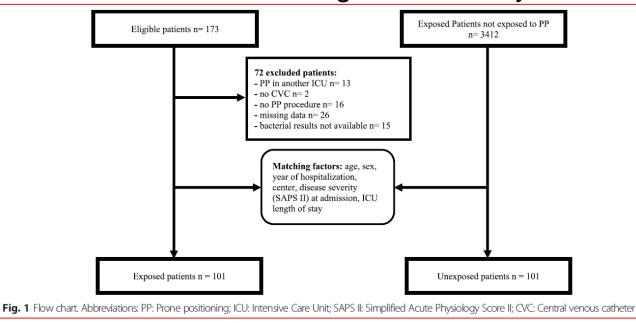
- 1. Routine use of needleless connectors as a CLABSI prevention strategy before an assessment of risks, benefits, and education regarding proper use²¹⁵⁻²¹⁹
- 2. Surveillance of other types of catheters (eg, peripheral arterial or peripheral venous catheters)^{11,21,22}
- 3. Standard, nonantimicrobial transparent dressings and CLABSI risk.
- 4. The impact of using chlorhexidine-based products on bacterial resistance to chlorhexidine
- 5. Sutureless securement
- 6. Impact of silver zeolite-impregnated umbilical catheters in preterm infants (applicable in countries where it is approved for use in children)²²⁷
- 7. Necessity of mechanical disinfection of a catheter hub, needleless connector, and injection port before accessing the catheter when antiseptic-containing caps are being used
 - Maybe the future...:
 - Standard catheter securement: CVC \rightarrow skin with sutures
 - possible nidus for bacterial colonization?
 - Suture-free systems:
 - "Safe": similar percentage of catheter migration or unplanned removals, prevent catheter failure?
 - Maybe promising systems for preventing infections? Some data from hemodialysis catheters...

Buetti N et al. Infection Control & Hospital Epidemiology (2022), 43, 553–569 // Am J Infect Control 44(1):54–60. https:// doi. org/ 10. 1016/j. ajic. 2015. 08. 022 // Karpanen TJ et al. Ann Intensive Care 9(1):49. https:// doi. org/ 10. 1186/s13613-019-0519-6 // Mitchell MI et al. Aust Crit Care 33(5):441–451. https:// doi. org/ 10. 1016/j. aucc. 2019. 10. 002 // Fujimoto K et al. (2021) Sci Rep 11(1):21771. https:// doi. org/ 10. 1038/s41598-021-01372-6

CONTENT

- Introduction
- SHEA/IDSA compendium 2022

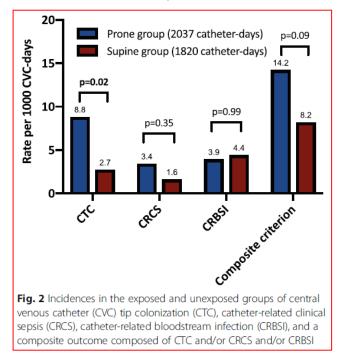
 Selected recently published studies about the prevention of intravascular catheter infections


Conclusions

1. Prone position and intravascular catheter infections

 202 patients matched: age, sex, year of hospitalisation, centre, SAPS II at admission and length of ICU stay

Characteristics	Total cohort (<i>N</i> = 202)	Exposed (prone) group (N = 101)	Unexposed (supine) group (N = 101) 45 (45)	
Centre 1 (VS 2)	90 (45)	45 (45)		
Gender (M)	147 (73)	74 (73)	74 (73)	
Age (y)	61 (48–68)	61 (46–68) 61 (52–70)		
BMI (kg/m²)	28 (25–34)	30 (26–35)	27 (24–31)	
SAPS II score	54 (43–66)	54 (43–66)	53 (44–66)	
SOFA score	9 (8–12)	10 (8–12)	9 (8–11)	
Immunosuppression ^a	98 (49)	51 (51)	47 (47)	
Surgical admission (vs. medical)	36 (18)	14 (14) 22 (22)		
Nosocomial patient origin (vs. community)	98 (49)	49 (49) 49 (49)		
Catheterization duration (days)	17 (8–26)	19 (9–27)	14 (8–25)	
Number of catheter per patient	2 (1–3)	2 (1–2) 2 (1–3)		
Catheter insertion site				
Jugular	148 (73)	76 (75) 72 (71)		
Subclavian	18 (9)	8 (8) 10 (10)		
Femoral	36 (18)	17 (17) 19 (19)		


Louis et al. BMC Infectious Diseases (2021) 21:534. https://doi.org/10.1186/s12879-021-06197-2

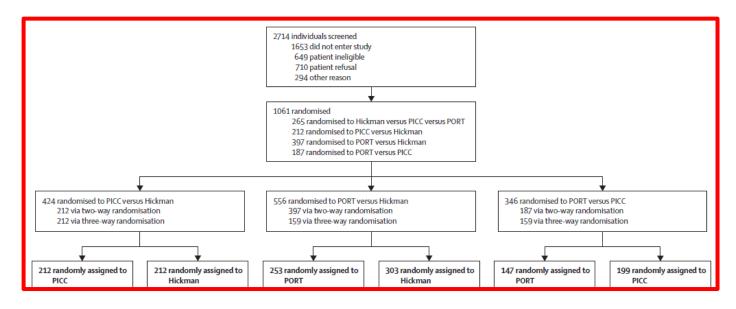
1. Prone position and intravascular catheter infections

 202 patients matched: age, sex, year of hospitalisation, centre, SAPS II at admission and length of ICU stay

Multivariate analysis identified PP as a factor related to catheter colonization or infection (p=0.04)

Louis et al. BMC Infectious Diseases (2021) 21:534. https://doi.org/10.1186/s12879-021-06197-2

2. Catheter type and risk of infection in oncological patients

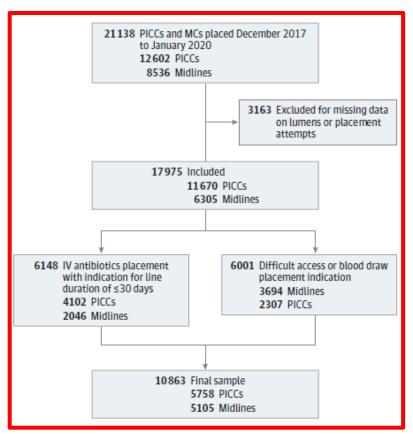

- Hickman-type tunnelled catheters (Hickman) versus PICCs versus totally implanted ports (PORTs)
- Systemic anticancer treatment (3 months) via a central vein
- Open-label, multicentre, randomised controlled trial
- Haematological malignancy from 18 oncology units in the UK
- Primary outcome: complication rate (composite)
 - infection, venous thrombosis, pulmonary embolus, inability to aspirate blood, mechanical failure, and other)
- FUP: until device removal, withdrawal from study, or 1-year follow-up

2. Catheter type and risk of infection in oncological patients

• 1061 were enrolled

2. Catheter type and risk of infection in oncological patients

	PICCs vs Hickman		PORTs vs Hickman		PORTs vs PICCs	
	PICCs (n=212)	Hickman (n=212)	PORTs (n=253)	Hickman (n=303)	PORTs (n=147)	PICCs (n=199)
Number of complications						
0	102 (48%)	109 (51%)	180 (71%)	172 (57%)	100 (68%)	106 (53%)
≥1	110 (52%)	103 (49%)	73 (29%)	131 (43%)	47 (32%)	93 (47%)
Laboratory confirmed bloodstream infection						
Patients	10 (5%)	41 (19%)	14 (6%)	49 (16%)	8 (5%)	7 (4%)
Complications	11 (6%)	43 (25%)	16 (12%)	54 (27%)	9 (11%)	7 (5%)
Suspected catheter-related bloodstream infection						
Patients	10 (5%)	18 (9%)	19 (8%)	15 (5%)	8 (5%)	5 (3%)
Complications	12 (7%)	23 (14%)	21 (16%)	16 (8%)	11 (13%)	
Venous thrombosis						
Patients		ar than bot	h Hickmai	n and Piccs.		hould rece
Venous thrombosis Patients PORTs are more effective Our findings suggest that	e and sat	er than both	iving SAC	CT for solid to	Imours 3	
PORTS are more and post that	at most p	atients rece	iving of a			
Our findings suggest the	ational H	ealth Servic	e		nplication	s in that gro
Our findings suggest that a PORT within the UK Na					-	C
		ss J et al. Lancet 202				


3. PICC versus midlines

- Multihospital registry (48 hospitals)
- Patients admitted to a participating site from Dec 2017 to Jan 2020
 - PICC or midline placement for the indications of difficult venous access or intravenous antibiotic therapy prescribed for 30 or fewer days
- Composite outcome: symptomatic catheter-associated deep vein thrombosis (DVT), catheter-related bloodstream infection and catheter occlusion.

3. PICC versus midlines

Table 1. Patient, Device, and Hospital Characteristics (n = 10 863)								
	No. (%)		Standardized					
Characteristic	Midline (n = 5105)	PICC (n = 5758)	mean difference	Total, No. (%)				
Patient characteristics								
Sex								
Female	2969 (58.2)	2772 (48.1)	0.202	5741 (52.8)				
Male	2136 (41.8)	2986 (51.9)	-0.202	5122 (47.2)				
Race and ethnicity ^a								
Asian	32 (0.6)	27 (0.5)	0.022	59 (0.5)				
Black	2001 (39.2)	1065 (18.5)	0.469	3066 (28.2)				
White	2877 (56.4)	4373 (75.9)	-0.423	7250 (66.7)				
Age group, ≥65 y	2524 (49.4)	2852 (49.5)	-0.002	5376 (49.5)				
Age, median (IQR)	64.8 (52.8-75.5)	64.9 (53.8-75.4)	-0.019	64.8 (53.4-75.4)				
Charlson, median (IQR)	3 (2-5)	3 (2-5)	0.041	3 (2-5)				
BMI, median (IQR)	28.8 (23.9-35.8)	29.2 (24.2-35.7)	-0.007	29.0 (24.1-35.8)				
Admitted from home	4499 (88.1)	4978 (86.5)	0.050	9477 (87.2)				
Level of care								
ICU	1145 (22.5)	1557 (27.1)	-0.106	2702 (24.9)				
Inpatient medical floor	3874 (76.1)	4165 (72.4)	0.085	8039 (74.1)				
Outpatient/emergency department	74 (1.4)	33 (0.6)	0.08809	107 (0.1)				

Swaminathan et al. JAMA Intern Med 2021. doi:10.1001/jamainternmed.2021.6844

3. PICC versus midlines

Table 1. Patient, Device, and Hospital Characteristics (n = 10 863) (continued)

	No. (%)		Standardized	
Characteristic	Midline (n = 5105)	PICC (n = 5758)	mean difference	Total, No. (%)
Device characteristics				
Placement indication				
Short-term antibiotics	2046 (40.1)	4102 (71.2)	-0.661	6148 (56.6)
Chemotherapy	5 (0.1)	76 (1.3)	-0.146	81 (0.7)
Difficult access/blood draws	3694 (72.4)	2307 (40.1)	0.688	6001 (55.2)
Multiple fluids	62 (1.2)	239 (4.2)	-0.183	301 (2.8)
TPN	2 (<0.1)	218 (3.8)	-0.276	220 (2.0)
No. of device lumens				
Single	4334 (84.9)	3637 (63.2)	0.512	7971 (73.4)
Double	762 (14.9)	1750 (30.4)	-0.376	2512 (23.1)
Triple/quadruple	9 (0.2)	371 (6.4)	-0.355	380 (3.5)
Gauge				
4F	4464 (87.4)	3425 (59.5)	0.668	7889 (72.6)
5F	638 (12.5)	2202 (38.2)	-0.619	2840 (26.1)
≥6F	3 (0.1)	131 (2.3)	-0.208	134 (1.2)
Device length, median (IQR), cm	14 (10-16)	42 (39-46)	-6.601	35 (14-43)
Device duration, median (IQR), d	6 (3-12)	14 (7-27)	-0.776	10 (5-20)
Device removal (for any complication)	371 (7.3)	300 (5.2)	0.085	671 (6.2)

Swaminathan et al. JAMA Intern Med 2021. doi:10.1001/jamainternmed.2021.6844

SELECTED PUBLICATIONS

3. PICC versus midlines

Table 4	Multivariate Analy	sis Showing Odds	of Maior Complica	ations Stratified	ov Device Type ^a			
		ysis Showing Odds of Major Complications Stratified by No. (%)			, bence type			
Outcome	2	Total (n = 10 863)	Midline (n = 5105)	PICC (n = 5758)	OR (95% CI)	P value	HR (95% CI)	<i>P</i> value
Any majo	or complication	769 (7.1)	200 (3.9)	569 (9.9)	1.99 (1.61-2.47)	<.001	1.21 (1.02-1.44)	.03
Primary	BSI	112 (1.0)	19 (0.4)	93 (1.6)	4.44 (2.52-7.82)	<.001	1.76 (1.06-2.92)	.03
Catheter	occlusion	510 (4.7)	105 (2.1)	405 (7.0)	2.24 (1.70-2.96)	<.001	1.58 (1.26-1.97)	<.001
DVT		160 (1.5)	74 (1.4)	86 (1.5)	0.93 (0.63-1.37)	.70	0.53 (0.38-0.74)	<.001
PE		22 (0.2)	8 (0.2)	14 (0.2)	1.29 (0.46-3.61)	.62	0.92 (0.36-2.32)	.85
periphera ^a For logis sandwic corre	Illy inserted central of tic mixed-effect mo h covariant Rando	atheter. dels, resulter mized	clinical	trials o	comparing ded ©		se device	ng ents e,
s appeared (Canada study ongoing NCT03502980)								
		Swaminathan et	al. JAMA Intern	Med 2021. doi:	10.1001/jamainternm	ed.2021.6	344	

4. New bundle among haemodialysis patients in Australia

- Stepped wedge, cluster randomised trial in 37 renal services across Australia (adults)
- Multifaceted intervention <u>bundle</u> that included elements of catheter care was implemented at one of three randomly assigned time points
- Outcome: CRBSI

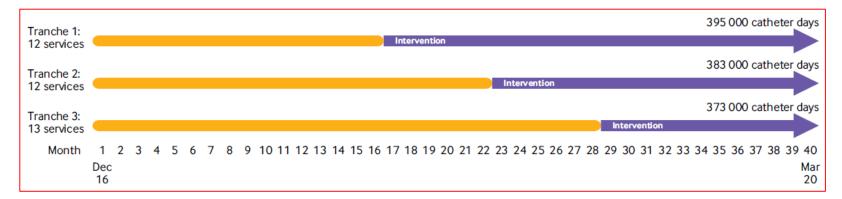
4. New bundle among haemodialysis patients in Australia

- At time of catheter insertion
- Surgical aseptic technique (hand hygiene, sterile gloves, surgical mask, eye protection, and gown), and a sterile environment (sterile surgical field on the patient) or a sterile room as per unit availability must be applied.
- An antiseptic solution using a minimum of 2% chlorhexidine with 70% alcohol must be used
- Site of insertion:
- \circ The right internal jugular vein is the best site for catheter insertion
- o Avoid catheters in the subclavian vein owing to incidence of central vein stenosis
- Avoid femoral catheters when possible
- We do not recommend any specific catheter type
- <u>Ultrasound</u> guided catheter placement is recommended if the resources are available
- Semi-permeable transparent dressing must be applied to the line. If a patient is allergic to these dressings, then an alternative appropriate dressing may be used
- All patients must receive education on the following topics:
- Vascular access care
- Hand hygiene
- \circ Risks related to catheter use
- Recognising signs of infection
- \circ Instructions for access management when away from the dialysis unit
- \circ To ensure that their catheter and exit site are kept dry
- \circ To seek assistance from dialysis should a dressing become wet, soiled, or leak, or if the catheter itself begins to slip out
- To not shower in the first 72 hours after catheter insertion. After 72 hours, in order to have a shower, the catheter site must be covered with waterproof material
- All patients should receive a copy of the REDUCCTION catheter care sheet

4. New bundle among haemodialysis patients in Australia

Catheter maintenance

- Hand hygiene, sterile gloves, a plastic apron, and aseptic technique (hand hygiene, gloves) must be applied at all occasions of catheter access:
- An antiseptic solution using a minimum of 2% chlorhexidine with 70% alcohol must be used
- For those unable to tolerate chlorhexidine, povidone-iodine or 70% alcohol may be used
- Dressing must be changed at least every seven days and each time the dressing appears visibly soiled or loose
- We do not recommend the routine use of mupirocin ointment or medicated honey at the catheter exit site
- All units must use at least one of the following specific interventions aimed at prophylaxis against catheter related bacteraemia*:
- Impregnated dressings (such as chlorhexidine impregnated patch or sponge) at the catheter exit site and/or
- Antimicrobial (eg, citrate or taurolidine based) or antibacterial (eg gentamicin) catheter locking solutions†
- All patients must be advised to ensure that their catheter and exit site are kept dry. Patients must be advised to seek assistance from dialysis should a dressing become wet, soiled, or leak, or if the catheter itself begins to slip out
- All patients should receive a copy of the REDUCCTION catheter care sheet
- All patients must receive education on the following topics:
- \circ Vascular access care
- Hand hygiene
- Risks related to catheter use
- Recognising signs of infection
- \circ Instructions for access management when away from the dialysis unit
- All patients must be advised not to shower in the first 72 hours after catheter insertion. After 72 hours, in order to have a shower, the catheter site must be covered with waterproof material



4. New bundle among haemodialysis patients in Australia

Table 1 Patient characterist	tics during baseline and inte	rvention phases of trial
Characteristics	Baseline phase (n=3519)	Intervention phase (n=2845)
Women	1398 (39.7)	1110 (39.0)
Mean (SD) age	60.7 (15.8)	60.9 (15.9)
Ethnicity:		
Asian*	293 (8.3)	240 (8.4)
White	2250 (63.9)	1822 (64.0)
First Nations†	378 (10.7)	342 (12.0)
Pacific Islander‡	89 (2.5)	63 (2.2)
Other or not recorded	509 (14.5)	378 (13.3)
Diabetes mellitus:		
Diet controlled	304 (8.6)	172 (6.0)
Drug controlled	1251 (35.5)	1049 (36.9)
Immunosuppressant use	472 (13.4)	372 (13.1)

Characteristics	Baseline phase		Intervention phase	
Characteristics	Catheters	Catheter days	Catheters	Catheter days
Total No of catheters	5431	497 87 5	5862	648390
Insertion on left side of body	1003 (18.5)	82479	1080 (18.4)	104582
Vein of insertion:				
Internal jugular	4653 (85.7)	457 083	5130 (87.5)	615014
Femoral	592 (10.9)	15058	554 (9.4)	15034
Subclavian	152 (2.8)	21752	139 (2.4)	13447
Other or unknown	34 (0.7)	3982	39 (0.7)	4895
Catheter type*:				
Tunnelled	4069 (74.9)	482 001	4696 (80.1)	633820
Non-tunnelled	1361 (25.1)	15838	1165 (19.9)	14 297
Reason for central venous access:				
Acute kidney injury	1898 (34.9)	95 340	1865 (31.8)	118 947
Start of maintenance dialysis without functioning access	1808 (33.3)	215685	2235 (38.1)	302 293
Transfer from peritoneal dialysis (temporary or permanent)	644 (11.8)	75709	612 (10.4)	85541
Arteriovenous fistula or graft thrombosis	645 (11.9)	70056	742 (12.7)	89175
Arteriovenous fistula or graft infection	95 (1.7)	6636	78 (1.3)	8730
Other	344 (6.1)	587	331 (5.6)	3514

Kotwal S et al. BMJ 2022;377:e069634 http://dx.doi.org/10.1136/bmj-2021-069634

4. New bundle among haemodialysis patients in Australia

Kotwal S et al. BMJ 2022;377:e069634 http://dx.doi.org/10.1136/bmj-2021-069634

CONTENT

- Introduction
- SHEA/IDSA compendium 2022
- Selected recently published studies about the prevention of intravascular catheter infections

Conclusions

CONCLUSIONS

Participate to a surveillance network. Educate, assess knowledge and audit the adherence to recommendations of ICU HCWs. Organize a follow-up of your process of care and **CRBSI** rate.

> Use only trained HCWs who demonstrate competence for the catheter insertion and maintenance. Assure adequate nurse-to-patient ratio. Use checklist for catheter insertion, catheter care and catheter removal.

STRUCTURE AND PROCESS OF CARE FOR PREVENTION OF INTRAVASCULAR CATHETER INFECTIONS

CONCLUSIONS

Chlorhexidine bathing? RECOMMENDED:

CATHETER INSPRTION

Hand hygiene Full barrier precautions for CVC insertion. Preparation of cutaneous site with 2% alcoholic CHG. Subclavian rather than jugular or femoral access.

antibiotics as a prevention DO NOT:

Insert unnecessary CVCs. Replace CVCs systematically.

Scrub the skin with antiseptic detergent before application of an antiseptic solution.

Use subclavian access for short-term dialysis catheters.

CATHETER CARE

CONCLUSIONS

RECOMMENDED:

Daily visual inspection of the catheter site.

Replace the dressing every 7 days. Consider CHG-impregnated dressings. Document the date of change.

Replace tubing at least every 7 days.

Replace tubing used to administer blood product, lipid emulsions within 24 hours of initiating the infusion.

> DO NOT: Leave in place unnecessary **CVCs** Leave in place dressing if unstuck, soiled or moistened

Pay attention with obese Buetti N & JF Timsit, modified from Textbook of critical care 2022

niccolo.buetti@gmail.com niccolo.buetti@hcuge.ch