

Le retrait systématique des cathéters périphériques

Dr. med. Niccolò BUETTI, MSc PhD

IPC & ID specialist

Service PCI, Hôpitaux Universitaires de Genève (HUG)

CONTENT

- Introduction
- Literature update: routine replacement versus clinically indicated replacement
- Large «before-after-before» study conducted in Geneva
- New data on dwell time and COVID-19 time
- Conclusions

- A global audit across 13 countries:
 - almost 60% of inpatients had at least one peripheral venous catheter (PVC) in place
- In Switzerland, 48.6% of patients in acute care have a PVC in place every single day
- Approximately 330 million PVCs were sold annually in the US
- PVC-related complications:
 - Hematoma
 - Phlebitis
 - Extravasation
 - Bruising
- Little is known about the bloodstream infection (BSI) risk associated with PVCs

PVCs and BSI risk

- Short-term PVCs accounted for:
 - a mean of 6.3% of nosocomial BSIs
 - 23% of nosocomial catheter-related BSIs
- Relative risk of CVC-BSI compared to PVC-BSI varied from 1.5 to 64
- Proportion of S. aureus PVC-BSI among CRBSI is high

Table 2. Risk of <i>Staphylococcus aureus</i> Bloodstream Infections due to Infected Peripheral Vascular Catheters CRBSI				
Study, First Author [Ref]	Staphylococcus aureus CR-BSIs due to PVCs	Staphylococcus aureus BSIs due to PVCs		
Mylotte [50]	50% of 28 CR-BSIs	18% of 79 BSIs		
Thomas ^a [51]	50% of 305 CR-BSIs			
Kok [52]	41% of 75 CR-BSIs	25% of 123 BSIs		
Bruno [55]		35% of 31 BSIs ^b		
Trinh [53]	12% of 196 CR-BSIs ^c			
Mestre [46]	64% of 14 CR-BSIs	28% of 32 BSIs		
Stuart [56]		24% of 583 BSIs		
Morris [54]	44% of 121 CR-BSIs	20% of 261 BSIs		
Rhodes [57]		24% of 151 BSIs ^d		
Austin ^a [49]		7.6% of 445 BSIs		

 Prolonged dwell time and catheter insertion under emergent conditions increased risk of PVC-BSI...

PVCs and BSI risk – dwell time

- No correlation between the number of catheter days per site for patients with a peripheral IV device, and hospital-acquired bacteraemia
- The mean PVC dwell time in PVC-BSI cases was 3.9 days (±2.1 days)

- after instituting infection prevention initiatives involving infection prevention initiatives involving infection prevention in the state of the sta die montaine to 3 days or doing so along with other interventions

 PVC dwell time to 3 days or doing so along with other interventions

Several prevention measures – one of them...

 Whether to replace PVCs routinely or when clinically indicate was categorized as an unresolved question by the US CDC:

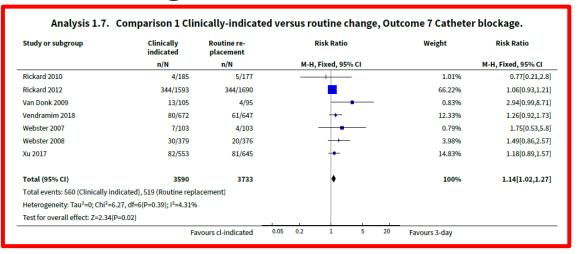
Replacement of Peripheral and Midline Catheters

Recommendations

- 1. There is no need to replace peripheral catheters more frequently than every 72–96 hours to reduce risk of infection and phlebitis in adults [36, 140, 141]. *Category IB*
- 2. No recommendation is made regarding replacement of peripheral catheters in adults only when clinically indicated [142–144]. *Unresolved issue*
- 3. Replace peripheral catheters in children only when clinically indicated [32, 33]. Category IB
- 4. Replace midline catheters only when there is a specific indication. Category II

CONTENT

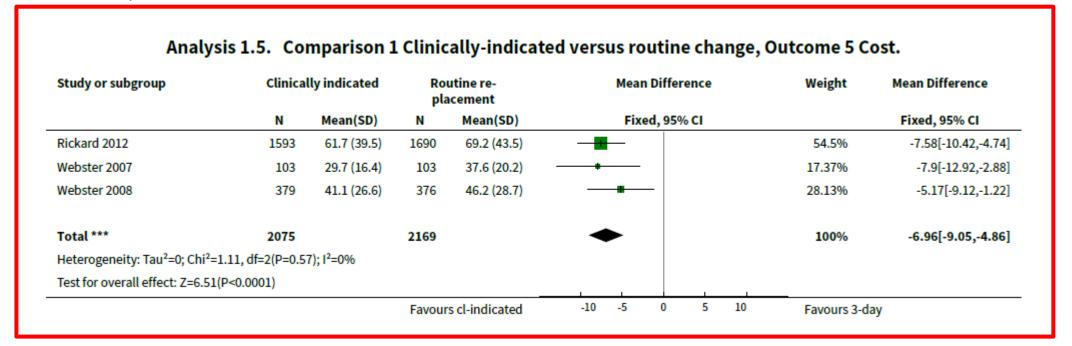
- Introduction
- Literature update: routine replacement versus clinically indicated replacement
- Large «before-after-before» study conducted in Geneva
- New data on dwell time and COVID-19 time
- Conclusions



Recent systematic review and meta-analysis

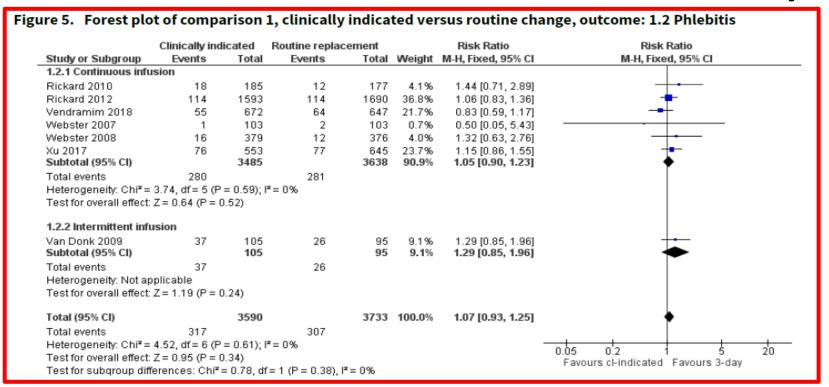
- 7,412 catheters (<u>from</u> RCTs) included
- Routine replacement:
 - \$\psi\$ infiltration of fluid into surrounding tissues
 - • ↓ rates of catheter failure due to blockage

Study or subgroup	Clinically indicated	Routine re- placement	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI
Rickard 2010	61/185	53/177	-+-	7.4%	1.1[0.81,1.49]
Rickard 2012	279/1593	235/1690	-	31.16%	1.26[1.07,1.48]
Vendramim 2018	172/672	134/647		18.66%	1.24[1.01,1.51]
Webster 2007	43/103	44/103		6.01%	0.98[0.71,1.35]
Webster 2008	135/379	120/376	+	16.46%	1.12[0.91,1.36]
Xu 2017	144/553	161/645	_	20.31%	1.04[0.86,1.27]
Total (95% CI)	3485	3638	•	100%	1.16[1.06,1.26]
Total events: 834 (Clinically in	ndicated), 747 (Routine repla	acement)			
Heterogeneity: Tau ² =0; Chi ² =	3.92, df=5(P=0.56); I ² =0%				
Test for overall effect: Z=3.36	(P=0)				



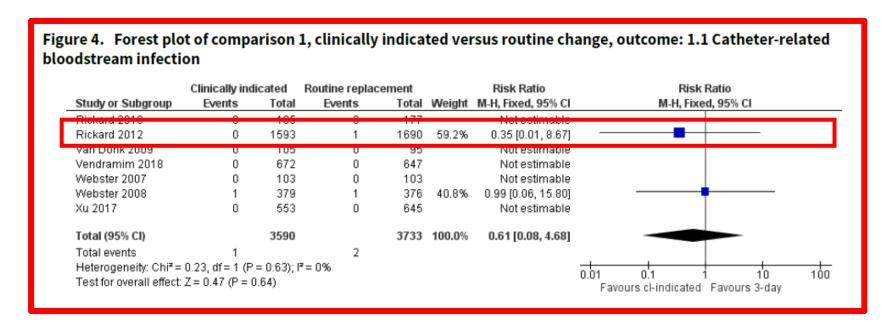
Recent systematic review and meta-analysis

- 7,412 catheters (from RCTs) included
- Clinically indicated removal:
 - ↓ device-related costs



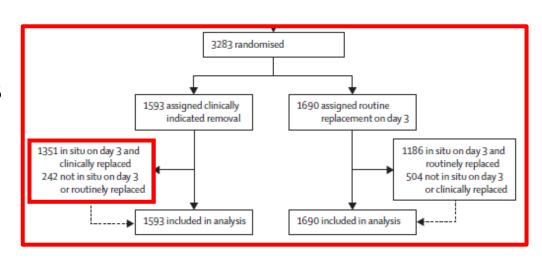
Recent systematic review and meta-analysis

- 7,412 catheters (from RCTs) included
- No clear difference in the incidence of thrombophlebitis

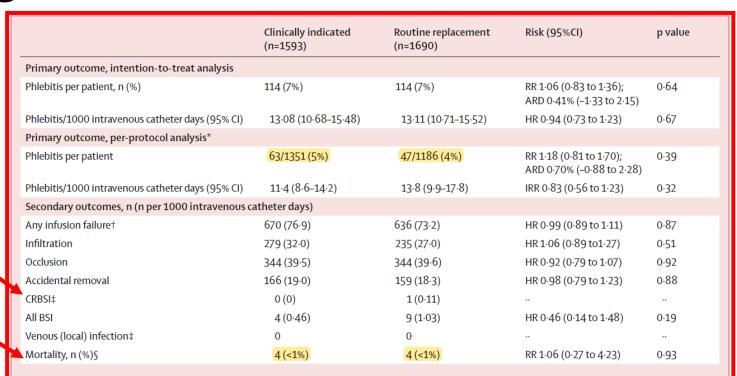


Recent systematic review and meta-analysis (BSI):

Similar incidences of CRBSI


...3 CRBSI in total...

Largest RCT 2012


- Exclusion criteria:
 - Bloodstream infection, planned removal of intravenous catheter within 24h, or intravenous catheter already in situ for more than 72 h.
 - PVCs inserted in an emergency were not eligible
- Other methodological problems:
 - Not blinded
 - Phlebitis assessed by research nurses

Largest RCT 2012

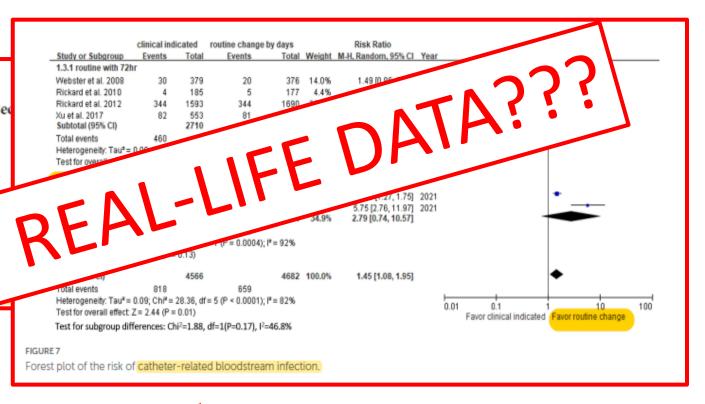
ARD-absolute risk difference. BSI-bloodstream infection. CRBSI-catheter-related bloodstream infection. HR-hazard ratio. IRR-incident rate ratio. RR-relative risk. *First catheter per patient only. †Combined endpoint of phlebitis, infiltration, occlusion, accidental removal, and CRBSI. ‡Risk and p value inestimable because of 0 incidence in one or both groups. §In all cases, mortality was unrelated to intravenous catheter treatment.

Table 3: Study outcomes by treatment group (per-patient analysis)

External validity:

- <1% mortality</p>
- CR-BSI 1/3283

 (0.03%) patients
 (1/5907 PVCs)
- Data only from Australia...



New meta-analysis

• Two new studies from China

	Clinically indicated (n=1556)	Routine replacement (n=1494)	Risk (95%CI)	p-value
Primary outcome, intention-to-tre	eat analysis			
Phlebitis per patient, n (%)	179 (11.5%)	150 (10%)	RR 1.083 (0.957 to 1.226) ARD 15.3% (12.0% to 19.2%)	.193
Phlebitis/1000 intravenous catheter days (95% CI)	28.4 (24.4-32.8)	32.3 (27.4-37.8)	HR: 0.696 (0.552, 0.877)	.002
Primary outcome, per-protocol ar	nalysis ^a			
Phlebitis per patient	171/1489 (11.5%)	141/1365 (10.3%)	RR 1.065 (0.937 to 1.212) ARD 11.9% (8.7% to 15.9%)	.323
Phlebitis/1000 intravenous catheter days (95% CI)	27.4 (23.5-31.8)	35.0 (29.6-41.2)	HR 0.525 (0.407, 0.47	
Secondary outcomes, n (%)				
Any infusion failure	721 (46.3%)	475 (31.8%)		1
Infiltration	217 (13.9%)		\sim	
Occlusion	312 (20.1%)			
Dislodgement				
CRBSI				
All BSI	. 11 4	1		.270
Venous (local) infec			0.05,3.14)	.367
Mortality, n (%)			HR 0.97 (0.20,4.82)	.973

CONTENT

- Introduction
- Literature update: routine replacement versus clinically indicated replacement
- Large «before-after-before» study conducted in Geneva
- New data on dwell time and COVID-19 time
- Conclusions

Research

JAMA Internal Medicine | Original Investigation

Comparison of Routine Replacement With Clinically Indicated Replacement of Peripheral Intravenous Catheters

Niccolò Buetti, MD, MSc; Mohamed Abbas, MD, MSc; Didier Pittet, MD, MSc; Marlieke E. A. de Kraker, PhD;

Daniel Teixeira, MSc; Marie-Noëlle Chraiti, RN; Valérie Sauvan, RN; Julien Sauser, MSc;

Stephan Harbarth, MD, MSc; Walter Zingg, MD

MATERIAL & METHODS

Setting, patients and PVCs:

- Observational study: prospectively collected data at the University of Geneva Hospitals (ten sites)
- Included patients and PVCs: 1 January 2016 and 29 February 2020
- Hospital-wide prospective surveillance of all healthcare-associated bloodstream infections including PVC-BSI (IPC team)
- Individual-level data on PVC: electronic health record

Catheter-related

MATERIAL & METHODS

Definitions:

- PVC-BSI:
 - BSI occurring from day of insertion until 48h after catheter removal and positive culture with the same microorganism of:
 - either a quantitative PVC tip culture ≥103 CFU/ml or
 - positive superficial culture with the same microorganism from pus from insertion site

OR

Catheter-associated A BSI was associated with a catheter if occurring from day or insertion until 48h after catheter removal, the resolution of symptoms in 48h after catheter removal and the absence of any other infectious focus.

MATERIAL & METHODS

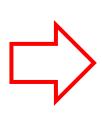
Intervention

1st January 2016-31st March 2018: **Routine replacement** of

PVCs every 96h.

BASELINE

1st April 2018-14th


October 2019:

Replace PVCs

when clinically

indicated only.

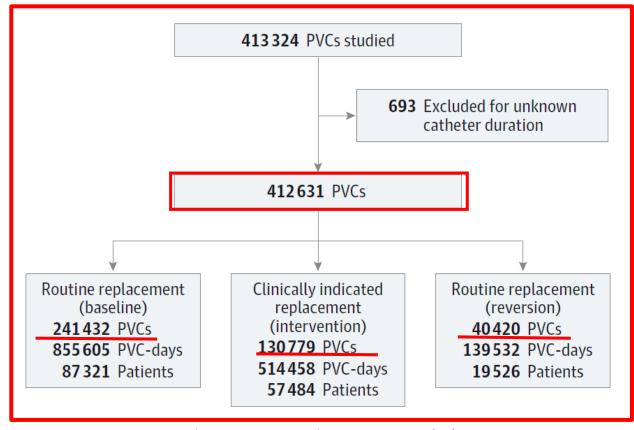
INTERVENTION

15th October 2019-29th February 2020: **Routine** replacement of

PVCs every 96h.

REVERSION

MATERIAL & METHODS


Statistics:

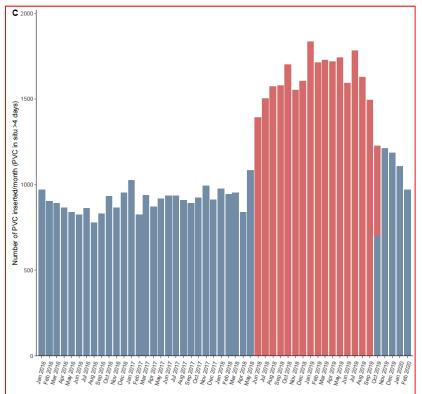
- Monthly aggregated data on PVCs and PVC-days were graphically summarized (2016 – 2020)
- Incidence rate ratios [IRR] were calculated for the intervention and reversion periods [baseline period as a reference] -> segmented Poisson regression models on aggregated monthly data
 - Three sensitivity analyses:
 - Excluding catheters inserted during the year 2016
 - Excluding children
 - Excluding PVCs inserted in the ICU

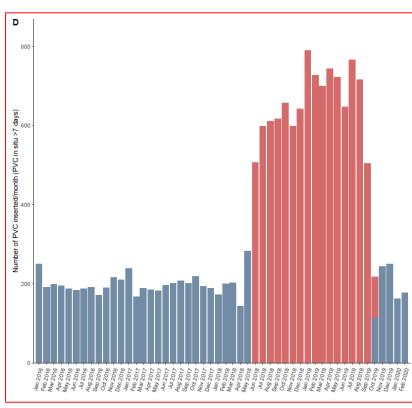
Flow-chart:

Buetti N. et al. JAMA Intern Med. 2021 Nov 1;181(11):1471-1478.

Description of the study population by study

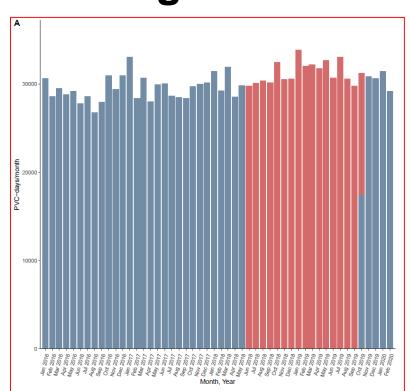

period

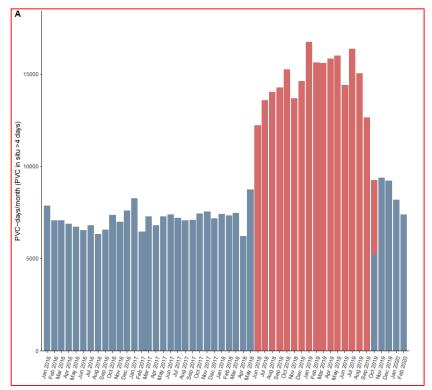

Characteristic	Baseline	Intervention	Reversion	P value
Sex ^b				
Female	47 114 (54.0)	31 259 (54.4)	10 555 (54.1)	.28
Male	40 207 (46.0)	26 225 (45.6)	8971 (45.9)	
Age, median (IQR) ^b	51 (33-71)	52 (33-72)	55 (35-74)	<.001
ICU admission	7120 (2.9)	2782 (2.1)	732 (1.8)	<.001
No. of catheters per patient, median (IQR) ^c	1 (1-2)	1 (1-2)	1 (1-2)	<.001
Dwell time, d				
>4	26 372 (10.9)	26 656 (20.4)	5170 (12.8)	<.001
>7	5745 (2.4)	10656 (8.1)	947 (2.3)	<.001
Insertion site				
Forearm	130 877 (54.2)	50 584 (38.7)	15 276 (37.8)	<.001
Arm	6930 (2.9)	2105 (1.6)	675 (1.7)	
Elbow	12 247 (5.1)	21 508 (16.4)	7530 (18.6)	
Hand	69 615 (28.8)	30 930 (23.7)	9141 (22.6)	
Other	6018 (2.5)	2636 (2.0)	771 (1.9)	
Wrist	15 745 (6.5)	23 016 (17.6)	7027 (17.4)	
Operator				
Out-of-hospital	18 909 (7.8)	10 573 (8.1)	2786 (6.9)	<.001
In-hospital	222 523 (92.2)	120 206 (91.9)	37 634 (93.1)	
PVC-BSI	11 (<0.1)	46 (<0.1)	4 (<0.1)	<.001



Number of PVCs stratified by catheter duration during the three study periods.

Number of PVC inserted/month

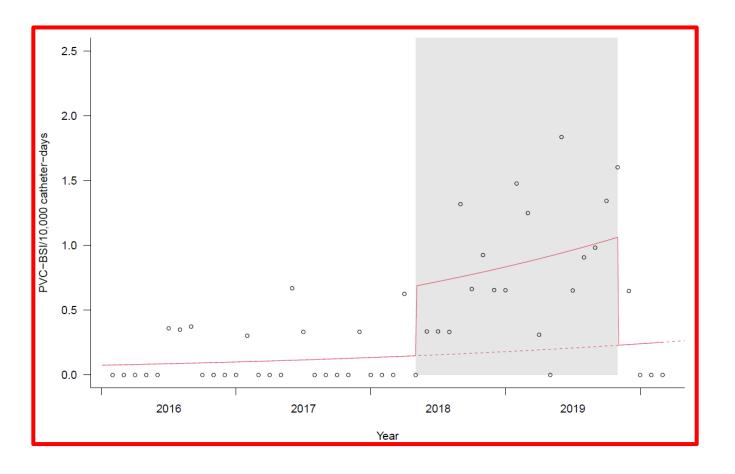

Number of PVC inserted/month (PVC in situ >4 days)


Number of PVC inserted/month (PVC in situ >7 days)

Number of PVC-days stratified by catheter duration during the three study periods.

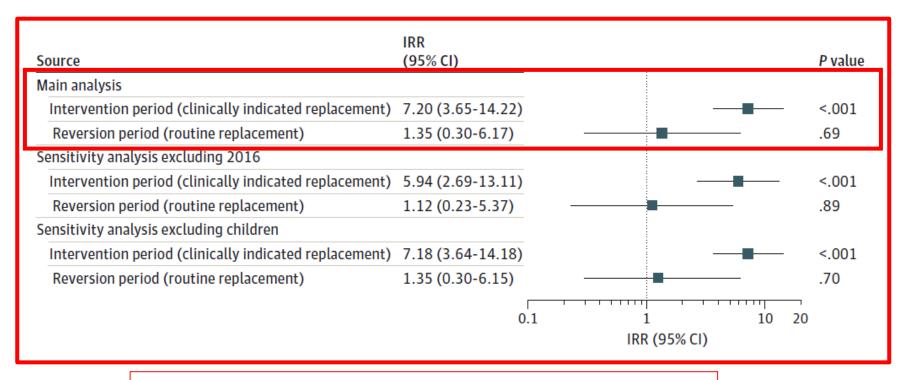
Number of PVC-days /month

Number of PVC-days /month (PVCs in situ >4 days)


1-1478.

Number of PVC-days/month (PVC in situ >7 days)

Monthly incidence of PVC-BSIs during the three study periods.


The incidence rate of PVC-BSI during the intervention period was 0.9 per 10'000 catheter-days, compared to 0.13 per 10'000 catheter-days during the baseline period.

IRRs of PVC-BSI during intervention and reversion periods

Reference: baseline period

Without ICU:

- Intervention: IRR 6.81, 95% CI 3.53-13.13, p<.001
- Reversion: IRR 1.26, 95% CI 0.28-5.68, p=0.76

Microbiological etiology of PVC-BSI, stratified by routine and clinically indicated replacement periods

	Routine	Clinically indicated	p-value*
	replacement°	replacement	
Achromobacter, n (%)	0 (0)	1 (2.2)	0.64
CoNS or other skin commensals, n	9 (60)	23 (50)	
(%)			
Enterobacter spp, n (%)	1 (6.7)	3 (6.5)	
Fungi, n (%)	1 (6.7)	1 (2.2)	
Klebsiella spp, n (%)	1 (6.7)	3 (6.5)	
MRSA, n (%)	0 (0)	3 (6.5)	
MSSA, n (%)	1 (6.7)	7 (15.2)	
Pseudomonas aeruginosa, n (%)	0 (0)	3 (6.5)	
Serratia marcescens, n (%)	1 (6.7)	0 (0)	
Sphingomonas paucimobilis, n (%)	0 (0)	1 (2.2)	
Polymicrobial, n (%)	1 (6.7)	1 (2.2)	

CONTENT

- Introduction
- Literature update: routine replacement versus clinically indicated replacement
- Large «before-after-before» study conducted in Geneva
- New data on dwell time & COVID-19 time
- Conclusions

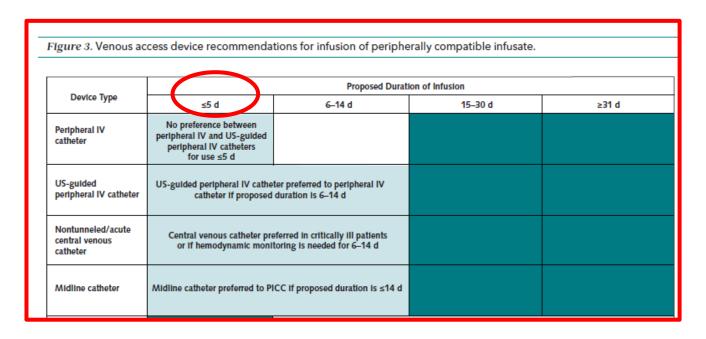
CONTENT

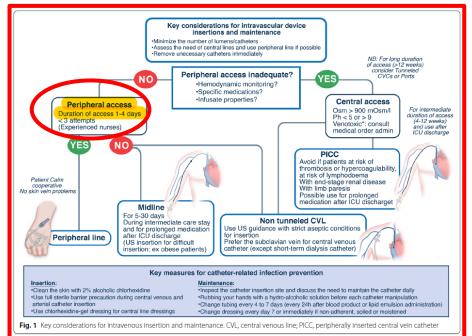
- Introduction
- Literature update: routine replacement versus clinically indicated replacement
- Large «before-after-before» study conducted in Geneva
- New data on dwell time & COVID-19 time
- Conclusions

CONCLUSIONS

The debate is (still) open:

- Evidence from RCTs:
 - Two trials reported 2 suspected BSI and one CRBSI, respectively
 - RCTs usually did not specifically target PVC-BSI as primary outcome (rare occurrence)
 - Despite large numbers at first glance, all RCTs were underpowered for detecting differences in PVC-BSI
 - PVC inserted in non-critical situations





CONCLUSIONS

The debate is (still) open:

- According to "insertion recommendations":
 - PVC should not be inserted for long infusions

CONCLUSIONS

The debate is (still) open:

- 1 PVC-BSI per 10'000 catheter-days → justification for routine replacement of PVCs?
 - PVC-BSI is the rarest among many complications around vascular access.
- Routine replacement -> high number of used catheters per hospital stay
- Clinically indicated removal maybe reduced device-related costs
- Repeated insertions
 - Patient discomfort and decreased venous capital for patients
 - HCWs → increased risks of needle-stick injuries and is time-consuming for vascular access teams
- Phlebitis: similar between the two groups
- Longer dwell-time may also cause phlebitis (?)
- Routine replacement reduces extravasation
- | !!!BANALIZATION!!! Rates of catheter failure due to blockage were probably lower in the routine replace group
- CRBSI
 - CRBSI → morbidity & mortality.
 - S. aureus infections?

